Diels–Alder Reactions of Alumina- and Magnesacyclopentadienes

L. O. Khafizova, L. R. Yakupova, R. A. Tuktarova, V. A. D'yakonov, L. M. Khalilov, A. G. Ibragimov, and U. M. Dzhemilev

> Institute of Petroleum Chemistry and Catalysis, Russian Academy of Sciences, pr. Oktyabrya 141, Ufa, 450075 Bashkortostan, Russia e-mail: ink@anrb.ru

> > Received February 20, 2008

Abstract— $[4\pi+2\pi]$ -Cycloaddition of substituted alumina- and magnesacyclopenta-2,4-dienes with such dienophiles as maleic anhydride, *N*-methylmaleimide, 1,4-benzoquinone, and 1,4-naphthoquinone resulted in the formation of the corresponding fused alumina- and magnesanorbornenes whose hydrolysis gave isobenzo-furan, isoindole, naphthalene, and anthracene derivatives in high yields.

DOI: 10.1134/S1070428008090108

Diels–Alder reactions of organic 1,3-dienes and dienophiles, including those containing heteroatoms, underlie one of the most popular and extensively used methods for the synthesis of difficultly accessible unsaturated carbo- and heterocyclic compounds with various structures [1–3]. Development of preparative procedures for the synthesis of metallacyclopentadienes [4–6] made it possible to involve some of them [7, 8] in [4+2]-cycloadditions with dienophiles. Prior to our studies, no data have been reported on Diels–Alder reactions with alumina- or magnesacyclopenta-2,4-dienes.

We examined reactions of various dienophiles with 1-ethyl(chloro)aluminacyclopenta-2,4-dienes generated from internal alkynes and RAlCl₂ (R = Et, Cl) in the presence of Cp₂ZrCl₂ as catalyst [9]. As dienophiles we used maleic anhydride, *N*-methylmaleimide, 1,4-benzoquinone, and naphthoquinone [10]. While developing optimal conditions for the [4+2]-cycloaddition of aluminacyclopenta-2,2-dienes to the above dienophiles we found that the initial aluminum compounds (RAlCl₂, R = Et, Cl) effectively catalyze the cycloaddition process; therefore, all experiments were carried out using excess RAlCl₂.

1,2,3,4,5-Pentaethylaluminacyclopenta-2,4-diene (Ia) reacted with maleic anhydride in 6 h at room temperature ($\sim 20^{\circ}$ C) to produce adduct IIa; after hydrolysis of the reaction mixture with 8–10% hydrochloric acid we isolated $\sim 85\%$ of 4,5,6,7-tetraethyl-3a,4,7,7a-tetrahydro-2-benzofuran-1,3-dione (IVa) (Scheme 1). The IR spectrum of IVa contained a strong absorption

band at 1760 cm⁻¹, which is typical of anhydride carbonyl groups. In the ¹³C NMR spectrum of **IVa** we observed signals from carbon atoms in the ethyl groups and signals at $\delta_{\rm C}$ 138.03, 42.51, and 40.76 ppm, which were assigned to carbon atoms in the cyclohexene ring. The carbonyl carbon nuclei resonated at $\delta_{\rm C}$ 172.20 ppm. The ¹³C NMR spectrum contained eight signals, indicating a high symmetry of the molecule. This is possible only when the ethyl groups on C^4 and C^7 are oriented cis with respect to each other (the cyclohexene ring adopts a *boat* conformation). The 4-H and 7-H protons gave rise to a narrow multiplet centered at δ 3.27 ppm in the ¹H NMR spectrum (halfwidth $w_{1/2}$ = 8 Hz); this suggests a small coupling constant between *cis*-oriented protons on C^{3a} and C^{7a} . Thus the fivemembered furan ring is oriented cis with respect to the ethyl groups on C^4 and C^7 . The above findings confirm the structure of IVa as 4,5,6,7-tetraethyl-3a,4,7,7atetrahydro-2-benzofuran-1,3-dione.

Aluminacyclopentadienes Ia and Ib generated by catalytic cycloalumination of hex-3-yne and oct-4-yne with EtAlCl₂ [9] reacted with maleic anhydride and *N*-methylmaleimide to give aluminanorbornene derivatives IIa, IIb, IIIa, and IIIb. The latter were subjected to hydrolysis with 8–10% hydrochloric acid to obtain isobenzofuran and isoindole derivatives IVa, IVb, Va, and Vb in 70–85% yield (Scheme 1).

1,4-Benzoquinone and 1,4-naphthoquinone showed a low reactivity as dienophiles toward 1-ethylaluminacyclopenta-2,4-dienes **Ia** and **Ib**. On the other hand, they fairly readily reacted with 1-chloroaluminacyclo-

R = Et(a), Pr(b).

penta-2,4-dienes **VIa** and **VIb** generated *in situ* by cycloalumination of the corresponding internal alkynes with AlCl₃, the ratio dienophile–compound **VI** being 2:1 (Scheme 2). The reaction of 1-chloro-2,3,4,5-tetra-ethylaluminacyclopenta-2,4-diene (**VIa**) with 1,4-ben-

zoquinone in THF at $\sim 20^{\circ}$ C (5 h), followed by hydrolysis, gave an approximately equimolar mixture of compounds **VIIIa** and **IXa** with an overall yield of $\sim 75\%$. Presumably, compounds **VIIIa** and **IXa** were formed via successive dehydrogenation of the hydrol-

RUSSIAN JOURNAL OF ORGANIC CHEMISTRY Vol. 44 No. 9 2008

ysis product of adduct **VIIa** by the action of excess 1,4-benzoquinone [10, 11] in acid medium [12–14]. By cycloaddition of 1-chloroaluminacyclopenta-2,4-diene (**VIa**) to 1,4-naphthoquinone (THF, $\sim 20^{\circ}$ C, 6 h) and subsequent hydrolysis of the reaction mixture we obtained tetrahydroanthraquinone **XIa** in $\sim 70\%$ yield (Scheme 2).

The structure of compound **XIa** was determined on the basis of two-dimensional ¹H–¹H COSY and HSQC experiments. The ¹³C NMR spectrum of **XIa** contained 11 signals, indicating that molecule **XIa** possesses a symmetry plane. Signals from the carbonyl carbon atoms and carbon atoms at the double bond ($C^2=C^3$) appeared in a weak filed. The carbon nuclei resonating in a strong field (at δ_C 38.89 ppm) showed coupling with CH proton resonating at δ 3.49 ppm; therefore, the signal at δ_C 38.89 ppm was assigned to the C¹ and C⁴ atoms. Diastereotopic methylene protons in the ethyl groups on C¹ and C⁴ gave two multiplets. Analogous diastereotopic splitting was observed for the allylic methylene protons at C² and C³.

We also tried to involve 2,3,4,5-tetrasubstituted magnesacyclopenta-2,4-dienes [15] in [4+2]-cycloaddition reactions with some dienophiles. However, unlike aluminacyclopenta-2,4-dienes, magnesacyclopentadienes generated *in situ* failed to react under analogous conditions. Taking into account the data of [16, 17], we presumed that diethyl ether used as solvent in the cyclomagnesation of acetylenes deactivated magnesacyclopentadienes via coordination at the magnesium atom. In fact, after removal of diethyl ether from the reaction mixture by evacuation and subsequent washing of the residue with two portions of benzene we succeeded in obtaining Diels–Alder adducts of 2,3,4,5-tetraethylmagnesacyclopenta-2,4-diene with maleic anhydride and 1,4-naphthoquinone (benzene, 80°C, 12 h). Hydrolysis of the reaction mixture gave compounds **IVa**, and **XIa**, respectively, in \sim 40% yield (Scheme 3).

The yield of adducts **IVa** and **XIa** can be improved by carrying out the reactions of magnesacyclopentadiene with the corresponding dienophiles in the presence of a catalytic amount (10 mol %) of AlCl₃ or BF₃·Et₂O [16, 17]. The use of the above Lewis acids allowed us to shorten the reaction time to 8 h, reduce the temperature to ambient, and raise the yield of **IVa** and **XIa** to 60%. The reaction of tetraethylmagnesacyclopentadiene with *N*-methylmaleimide even in the presence of AlCl₃ or BF₃·Et₂O on heating in boiling toluene (24 h) gave no more than 8% of adduct **Va**.

EXPERIMENTAL

The IR spectra were recorded from films on a Specord 75IR spectrometer. The mass spectra (electron impact, 70 eV) were obtained on an MKh-1306 spectrometer (ion source temperature 200°C). The ¹H and ¹³C NMR spectra were measured from solutions in CDCl₃ on a JEOL FX-90Q spectrometer at 89.55 (¹H) and 22.5 MHz (¹³C); the two-dimensional spectra (¹H–¹H COSY and HSQC) were obtained on a Bruker Avance 400 instrument (400.13 MHz for ¹H and 100.62 MHz for ¹³C). The reaction mixtures were analyzed by GLC on a Chrom-5 chromatograph (1200×3-mm column packed with 5% of SE-30 or 15% of PEG-6000 on Chromaton N-AW; carrier gas helium). All reactions with organometallic compounds were carried out in a stream of dry argon. Tetrahydrofuran and diethyl ether were dried by boiling over metallic sodium. Commercially available EtAlCl₂ (86%) and AlCl₃ were used. The yields of organoaluminum compounds were determined by GLC analysis of the hydrolysis products using *n*-hexadecane as internal standard.

Reactions of 1-ethyl-2,3,4,5-tetraalkylaluminacyclopenta-2,4-dienes with dienophiles (general pro*cedure*). A glass reactor was filled with argon and charged at ~0°C under stirring with 1.0 mmol of Cp₂ZrCl₂, 7.5 mmol of magnesium powder, 10 mmol of hex-3-yne or oct-4-yne, 10 ml of THF, and 7.5 mmol of EtAlCl₂ or AlCl₃. The mixture was allowed to warm up to room temperature (20-22°C) and stirred for 8 h, 14 mmol of the corresponding dienophile was added, and the mixture was stirred until the reaction was complete, treated with 10% hydrochloric acid, and extracted with diethyl ether or hexane. The extract was dried over MgSO₄, volatile compounds were removed under reduced pressure, and the residue was passed through a thin layer of neutral aluminum oxide and analyzed.

Reactions of 2,3,4,5-tetraethylmagnesacyclopenta-2,4-diene with dienophiles (general procedure). A glass reactor was filled with argon and charged at $\sim 0^{\circ}$ C under stirring with 1.0 mmol of Cp₂ZrCl₂, 10 mmol of hex-3-yne, and 15 mmol of BuMgHlg (Hlg = Cl, Br) as a 2 M solution in diethyl ether. The mixture was allowed to warm up to room temperature (20–22°C), stirred for 2 h, and evacuated, the residue was washed with two portions of benzene, 15 mmol of the corresponding dienophile was added, and the mixture was stirred until the reaction was complete, treated with 10% hydrochloric acid, and extracted with diethyl ether or hexane. The extract was dried over MgSO₄, volatile compounds were removed under reduced pressure, and the residue was passed through a thin layer of neutral aluminum oxide and analyzed.

4,5,6,7-Tetraethyl-3a,4,7,7a-tetrahydro-2-benzofuran-1,3-dione (IVa). Yield 85%, R_f 0.42 (hexanediethyl ether, 2:1). IR spectrum, v, cm⁻¹: 3350, 2920, 1760, 1390, 1150, 1070, 1020, 980, 920. ¹H NMR spectrum, δ , ppm: 0.84 t (6H, CH₃, J = 7.0 Hz), 1.03 t (6H, CH₃, J = 7.0 Hz), 1.83–2.08 m (4H, CH₂), 2.01 m (2H, CH), 2.03 q (4H, CH₂, J = 7.0 Hz), 3.27 m (2H, CH, $w_{1/2}$ = 8 Hz). ¹³C NMR spectrum, δ_C , ppm: 12.27, 14.67, 19.64, 20.41, 40.76, 42.51, 138.03, 172.20. Found, %: C 72.48; H 8.96. *M* 264. C₁₆H₂₄O₃. Calculated, %: C 72.69; H 9.15.

4,5,6,7-Tetrapropyl-3a,4,7,7a-tetrahydro-2-benzofuran-1,3-dione (IVb). Yield 72%, R_f 0.44 (hexanediethyl ether, 2:1). ¹H NMR spectrum, δ , ppm: 0.84 t (6H, CH₃, J = 7.0 Hz), 1.03 t (6H, CH₃, J = 7.0 Hz), 1.78–2.10 m (18H, CH, CH₂), 3.23–3.34 (2H, CH). 13 C NMR spectrum, δ_{C} , ppm: 13.50, 13.96, 20.74, 22.10, 29.82, 31.03, 39.54, 42.91, 137.82, 172.11.

4,5,6,7-Tetraethyl-2-methyl-2,3,3a,4,7,7a-hexa-hydro-1*H***-isoindole-1,3-dione (Va).** Yield 85%, $R_{\rm f}$ 0.38 (hexane-diethyl ether, 2:1). IR spectrum, v, cm⁻¹: 3350, 2950, 2880, 1760, 1690, 1430, 1370, 1280, 1160, 1060, 1020, 980, 920. ¹H NMR spectrum, δ , ppm: 0.78 t (6H, CH₃, *J* = 7.0 Hz), 1.05 t (6H, CH₃, *J* = 7.0 Hz), 1.05 t (6H, CH₃, *J* = 7.0 Hz), 1.48–2.20 m (10H, CH, CH₂), 2.92 s (3H, CH₃N), 3.00–3.11 m (2H, CH). ¹³C NMR spectrum, $\delta_{\rm C}$, ppm: 12.27, 14.29, 19.92, 23.31, 24.97, 40.96, 41.35, 136.88, 178.07. Found, %: C 73.49; H 9.64; N 4.97. C₁₇H₂₇NO₂. Calculated, %: C 73.60; H 9.81; N 5.05.

2-Methyl-4,5,6,7-tetrapropyl-2,3,3a,4,7,7a-hexahydro-1*H***-isoindole-1,3-dione (Vb).** Yield 72%, $R_{\rm f}$ 0.37 (hexane-diethyl ether, 2:1). ¹H NMR spectrum, $\delta_{\rm C}$, ppm: 0.78 t (6H, CH₃, J = 7.0 Hz), 1.02 t (6H, CH₃, J = 7.0 Hz), 1.35–2.22 m (26H, CH, CH₂), 2.90 s (3H, CH₃N), 3.02–3.15 m (2H, CH). ¹³C NMR spectrum, $\delta_{\rm C}$, ppm: 13.59, 14.68, 22.92, 23.31, 24.97, 33.91, 40.96, 41.35, 136.88, 180.17.

5,6,7,8-Tetraethyl-1,4,5,8-tetrahydronaphtha lene-1,4-dione (VIIIa). Yield 25%, $R_{\rm f}$ 0.31 (hexanediethyl ether, 2:1). ¹H NMR spectrum, δ , ppm: 0.82– 1.09 m (12H, CH₃), 1.17–2.59 m (8H, CH₂), 3.45 m (2H, CH), 5.92 m (2H, CH=CH). ¹³C NMR spectrum, $\delta_{\rm C}$, ppm: 13.84, 14.03, 24.99, 29.57, 39.85, 134.50, 136.19; 145.34, 187.22. Found, %: C 78.67; H 8.73. *M* 272. C₁₈H₂₆O₂. Calculated, %: C 78.79; H 9.55.

5,6,7,8-Tetraethyl-5,8-dihydronaphthalene-1,4diol (IXa). Yield 24%, $R_{\rm f}$ 0.39 (hexane-diethyl ether, 2:1). ¹H NMR spectrum, δ , ppm: 0.84–1.07 m (12H, CH₃), 1.17–2.59 m (8H, CH₂), 3.35–3.68 m (2H, CH), 6.23–6.71 m (2H, H_{arom}). ¹³C NMR spectrum, $\delta_{\rm C}$, ppm: 13.01, 13.57, 19.88, 25.33, 39.43, 116.07, 130.50, 136.06, 146.71. *M* 274.

1,2,3,4-Tetraethyl-1,4,4a,9,10,10a-hexahydroanthracene-9,10-dione (XIa). Yield 70%, $R_{\rm f}$ 0.67 (hexane-diethyl ether, 2:1). IR spectrum, v, cm⁻¹: 3400, 2950, 1760, 1710, 1650, 1590, 1280, 1160, 1020, 980, 920. ¹H NMR spectrum, δ , ppm: 0.87 t (6H, CH₃, J =7.0 Hz), 0.94 t (6H, CH₃, J = 7.0 Hz), 1.47–1.66 m (4H, CH₂), 1.96–2.29 m (4H, CH₂), 2.12 m (2H, CH), 3.49 m (2H, CH), 7.80–8.15 m (4H, H_{arom}). ¹³C NMR spectrum, $\delta_{\rm C}$, ppm: 13.54, 13.74, 20.28, 23.98, 38.89, 126.20 (C_{arom}), 132.30 (C_{arom}), 133.91 (C_{arom}), 134.66, 147.94, 184.62. **1,2,3,4-Tetrapropyl-1,4,4a,9,10,10a-hexahydroanthracene-9,10-dione (XIb).** Yield 58%, R_f 0.66 (hexane-diethyl ether, 2:1). ¹H NMR spectrum, δ , ppm: 0.88 t (6H, CH₃, J = 7.0 Hz), 0.98 t (6H, CH₃, J = 7.0 Hz), 1.47–1.68 m (8H, CH₂), 1.98–2.24 m (8H, CH₂), 3.49 m (2H, CH), 7.76–8.05 m (4H, H_{arom}). ¹³C NMR spectrum, δ_C , ppm: 13.89, 14.24, 20.48, 24.98, 30.87, 32.51, 33.88, 39.52, 126.17 (C_{arom}), 133.66 (C_{arom}), 134.28 (C_{arom}), 147.35, 184.21.

This study was performed under financial support by the Russian Foundation for Basic Research (project no. 07-03-00287), by the President of the Russian Federation (project no. NSh-2349.2008.3), and by the Foundation for Support of Russian Science.

REFERENCES

- Onishchenko, A.S., *Dienovyi sintez* (The Diels-Alder Reaction), Moscow: Akad. Nauk SSSR, 1963.
- Fringuelli, F. and Taticchi, A., *The Diels–Alder Reaction:* Selected Practical Methods, New York: Wiley, 2002.
- Kobayashi, S. and Jørgensen, K.A., Cycloaddition Reactions in Organic Synthesis, New York: Wiley, 2002.
- 4. Braye, E.H., Hübel, W., and Caplier, I., J. Am. Chem. Soc., 1961, vol. 83, p. 4406.
- Syutkina, O.P., Rybakova, L.F., Egorova, E.N., Sigalov, A.B., and Beletskaya, I.P., *Izv. Akad. Nauk SSSR, Ser. Khim.*, 1983, p. 648.
- Dubac, J., Laporterie, A., and Manuel, G., Chem. Rev., 1990, vol. 90, p. 215.

- 7. Balaich, G.J. and Rothwell, I.P., *Tetrahedron*, 1995, vol. 51, p. 4463.
- Laporterie, A., Manuel, G., Dubac, J., Mazerolles, P., and Iloughmane, H., *J. Organomet. Chem.*, 1981, vol. 210, p. 33.
- 9. Dzhemilev, U.M., Ibragimov, A.G., Khafizova, L.O., Yakupova, L.R., and Khalilov, L.M., *Russ. J. Org. Chem.*, 2005, vol. 41, p. 673.
- Becker, H.-D., *The Chemistry of The Quinonoid Compounds*, Patai, S., Ed., London: Interscience, 1974, chap. 7.
- Walker, D. and Hiebert, J.D., *Chem. Rev.*, 1967, vol. 67, p. 153.
- 12. Konovalov, A.I. and Kiselev, V.D., *Izv. Ross. Akad. Nauk, Ser. Khim.*, 2003, p. 279.
- Kloetzel, M.C., Organic Reactions, Adams, R., Ed., New York: Wiley, 1948, vol. 4. Translated under the title Organicheskie reaktsii, Moscow, Inostrannaya Literatura, 1951, vol. 4, p. 7.
- Butz, L.W. and Rytina, A.W., Organic Reactions, Adams, R., Ed., New York: Wiley, 1949, vol. 5. Translated under the title Organicheskie reaktsii, Moscow, Inostrannaya Literatura, 1951, vol. 5, p. 93.
- Dzhemilev, U.M., Ibragimov, A.G., D'yakonov, V.A., and Zinnurova, R.A., *Russ. J. Org. Chem.*, 2007, vol. 43, p. 176.
- 16. Kiselev, V.D. and Konovalov, A.I., Usp. Khim., 1989, vol. 58, p. 383.
- Kiselev, V.D., Kashaeva, E.A., Potapova, L.N., and Iskhakova, G.G., *Izv. Ross. Akad. Nauk, Ser. Khim.*, 2004, p. 51.